




3

SAND2000-2467
Unlimited Release

Printed October 2000

Approximate Public Key Authentication with
Information Hiding

E. V. Thomas
Statistics & Human Factors Department

T. J. Draelos
Cryptography and Information Systems Surety Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM  87185-0449

Abstract

This paper describes a solution for the problem of authenticating the shapes of statistically
variant gamma spectra while simultaneously concealing the shapes and magnitudes of the
sensitive spectra.   The shape of a spectrum is given by the relative magnitudes and positions of
the individual spectral elements.  Class-specific linear orthonormal transformations of the
measured spectra are used to produce output that meet both the authentication and concealment
requirements.  For purposes of concealment, the n-dimensional gamma spectra are transformed
into n-dimensional output spectra that are effectively indistinguishable from Gaussian white
noise (independent of the class).  In addition, the proposed transformations are such that
statistical authentication metrics computed on the transformed spectra are identical to those
computed on the original spectra.
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Approximate Public Key Authentication with
Information Hiding

1. Introduction

In many situations, it is desirable to authenticate data without revealing the data in detail.  For
instance, a party to a multilateral treaty might want to convince monitoring inspectors of the
treaty that collected data represents a particular weapon type without revealing a detailed gamma
spectrum of the weapon, which may in fact be classified.  Even if the classified data can be kept
private via an alternative representation, consistent correspondence between the classified and
unclassified representations may reveal too much information about the weapon.  As another
example, the government may wish to utilize an information hiding mechanism to mitigate the
concern of the private sector in providing proprietary information for national infrastructure
protection.

Encryption alone cannot solve this problem.  Additionally, certain data are prone to statistical
variation, thus creating difficulties for consistent authentication results using standard digital
authentication techniques.  Gamma spectra are also examples of statistically variant data where
measurements of the same sample with the same equipment will result in different spectra due to
Poisson noise conditions.

Finally, public key cryptographic techniques are often useful in situations where one
authenticating party seeks to convince multiple verifying parties or when the origination of data
must be verifiable, thus providing non-repudiation.  The purpose of this LDRD will be to
investigate digital public key mechanisms that can be used to authenticate data prone to
statistical variation and to investigate techniques for hiding data details while still proving the
authenticity and integrity of the data.

1.1 Problem Description

Although the weapon inspection problem will be used as the primary application of this work,
other applications exist with a similar problem set.  For example, the use of biometrics to enable
or authorize a certain function such as entrance into a building faces similar challenges.  A
biometric reading from the same individual using the same equipment will likely be slightly
different each time.  Moreover, the use of biometric information may have privacy implications
that drive the need for hiding the detailed biometric information itself.

Generally speaking, any authentication process will have two steps.  The first step is to initialize
the authentication system by acquiring a reliable template of the item in question.  In the weapon
inspection application, this will be a representative weapon from the class of treaty-limited items.
In the biometric application, initialization requires verification of the individual using
information such as a birth certificate, driver’s license, fingerprint, or DNA sample, and
acquisition of the initial biometric.  The initialization step requires that the representative item
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(e.g., weapon or person) be certified to truly be a member of the said class.  This generally
requires additional off-line inspection processes that will not be discussed in this paper.

With the acquisition of an authentic template of monitored items, the system has been boot-
strapped and can be used for subsequent inspections in the second part of the process.  In the
weapon authentication application, the basic problem is to make a class association as opposed to
differentiating between individual weapons of the same class.  In the biometric application, the
original biometric is used as a template for subsequent authentication of the individual.

1.2 Related Work

An approach developed for use in biometric identification utilizes error correction coding
techniques [DFM98].  It uses majority coding to construct a template of a biometric that is
known to vary between measurements.  Majority coding takes a number of measurements
(preferably odd) and assigns each bit of the template to the value that is most often represented in
the measurements using a majority rule.  The template is then encoded into a code vector with a
specified amount of redundancy.  The amount of redundancy and the encoding technique used
determines how many bits can be corrected in the template.  In other words, if a vector does not
perfectly match any codeword (template), then the closest codeword (in a Hamming sense) is
generally assigned.  The distance between codewords is representative of the number of
correctable bits as well.

During verification, the same majority coding technique is used to acquire a biometric
representative from a number of measurements.  Since majority coding is a bit-oriented
technique, the idea is to use it to acquire a representative test biometric.  The hope is that it is
within a specified Hamming distance of the original biometric template.  If the representative is
close enough to the template, it can be decoded into the exact biometric using bounded distance
decoding.

A speech scrambling concept [SDM97] uses a data hiding technique that is very similar to the
method described herein.  The difference is that we constrain the input signal via scaling and
centering prior to permuted transformation and they propose no authentication of the output
signal.  Scaling and centering of the input signal allows some very strong statements about the
security of the algorithm to be proven.  We show that independent of the permutation key and
input spectrum, the output of the constrained permuted transform is consistent with a realization
of Gaussian white noise.  Hence, the distribution of the components of the output signal is
substantially non-informative about the input signal.

1.3 Organization of the Paper

The remainder of this paper provides details of the approximate authentication with information
hiding method referred to as the PTP algorithm, and illustrates how it might be applied to the
weapon authentication problem.  Section 2 provides an overview of the weapon authentication
process and establishes the need for the PTP algorithm.  Section 3 describes the PTP solution in
detail, providing a numerical example of its use in gamma spectrum authentication.  Section 4
discusses the efficacy of the proposed procedure for data hiding and provides some operational
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guidelines for using the proposed method.  Section 5 discusses its efficacy in preserving the
ability to discriminate across classes.  Section 6 provides a summary and gives information about
the software available to utilize the PTP algorithm.

2. System Solution

The goals of a system solution for the problem of ensuring integrity of statistically variant data
while maintaining privacy of the original data are twofold.  First, the system must allow
authentication (ideally, integrity, identification, and non-repudiation) of the source of the data.
Secondly, the system solution must not reveal any usable information about the original source
data.

The approach was developed by the LDRD team and involves the retention of information in the
original signal in a statistical sense while provably hiding the original data.  This approach is
very non-invasive in terms of allowing users to utilize the same statistical authentication
measures and evaluations on the measured signal that are used without any information hiding.
The algorithm for hiding the original data involves permuting the original signal, applying a
linear transformation, and then permuting the transformed signal.  Through this process, the
output signal becomes essentially indistinguishable from Gaussian white noise.  The individual
elements of the output signal or vector are completely uncorrelated.

2.1 Overview of the Weapon Authentication Process

In the weapon monitoring application, the host country is responsible for the inspected item
while other parties to a particular treaty act as inspectors.  The goal of weapon monitoring is to
distinguish between different classes of weapons so that certain treaty-limited items can be
tightly controlled.

In the two-step authentication process, the first step is to acquire a reliable template of the item
under inspection.  This step is performed only once for each weapon class and results in a
template or reference signal.  Step two of the authentication process involves acquiring a
measurement of the inspected item for comparison to the reference signal.  In the weapon
authentication application, a statistically variant signal is recorded and measured in similarity to
the prerecorded template.  For example, the weapon’s gamma spectrum must be statistically
similar enough to a weapon-class template to be considered a member of the class.  This process
is shown in Figure 2.1.
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Figure 2.1 Authentication of a statistically variant signal
Given that the process shown in Figure 2.1 provides authentication of the inspected item,
information hiding of the original data signal must be added to qualify as an acceptable, secure
system solution.  The system shown in Figure 2.2 provides information hiding of the original
signal and outputs a signal that can be handled in much the same way as the original measured
signal without information hiding.  This is important because it may be possible to accommodate
already familiar techniques for measurement of statistical similarity.

Inspected
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)(YH

Figure 2.2 Authentication of a statistically variant signal with information hiding

3. The Permutation-Transformation-Permutation (PTP) Solution

The Permutation-Transformation-Permutation (PTP) solution to information hiding, as its name
implies, performs 3 operations to the measured signal, after which the signal is completely
unrecognizable from its original content. Figure 3.1 shows this system in block diagram form.
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Figure 3.1 Authentication of a statistically variant signal with information hiding using the
PTP solution

3.1 Permutation

The purpose of the permutation functions π and σ is to scramble the signal Y such that (YπW)σ
can be made public without risk of revealing Y.  Permutation operations are easily reversible if
the permutation is known.  Therefore π and σ must be kept secret.  However, the root
permutation function f() can be a standard secure hash function which need not be kept secret.
Passcode CA and CB, uniquely associated with the Inspected Item, is entered by the Inspected
Agent.  Passcode CA (CB) is hashed and separated into n(m) equally sized pieces, each piece
representing a numeric value.  The pieces are ranked numerically and the ranking becomes the
permutation π (σ).

For example, let a passcode of 1234 hash to the following 32-bit digest.

f (1234) = 9 f 2735a7

If the size of the permutation is 8, then each hex digit of f(1234) is ranked as follows to form the
permutation. Note that ties can be handled in a predetermined or random manner.

f (1234)  = 9 f 2 7 3 5 a 7

Permutation  = 6 8 1    4 2 3 7 5

3.2 Transformation

The first task of the monitoring equipment is to produce a digital representation of the inspected
item.  This information, referred to as the Measured Signal (Y), is private and not to be released
to or derivable by the Inspector.  The Measured Signal is transformed via a linear transformation
matrix, W, such that the new signal is YW.  If the transformation matrix W were kept private as
well, then this step could accomplish the complete information hiding solution.  However, if W is
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made public, then Y could be derived from YW.  Therefore, permutations are applied before and
after the transformation of Y.

3.3 Details of Permutation-Transformation-Permutation (PTP) Method

( )σπππ WYWYYY ⋅→⋅→→

Definitions:

•  Y is the n-dimensional row vector {Y1, Y2, …, Yn} of measurements (typically
comprising a  spectrum).

•  π is a permutation of the integers from 1:n that is unique to a particular verification
class.  A verification class consists of 1 or more physical units/items/individuals.  For
example, in the degenerate case, a verification class could be a single individual.

•  W is an n x m transformation matrix with orthonormal columns that transforms the
vector of measurements to nm ≤  latent variables.

•  σ is a permutation of the integers from 1:m that is unique to a particular verification
class.

Step 1: Center and scale-transform Y such that the mean of Y is 0 and the standard deviation of Y
is 1.  The scale transformation provides data normalization that renders the shape of the spectrum
as being the sole identifying characteristic of a class.

Step 2: Permute the elements of Y : πYY → .  The idea is to permute the elements of Y before
applying the linear transformation (W) so that each latent variable is constructed/composed
differently for each verification class.  The elements of Y are randomly re-ordered.

Step 3: Linearly transform the permuted spectrum via W: WYY ⋅→ ππ .  The orthonormality of
W implies that

j

n

i
ijw ∀=

=

,1
1

2 (1)

Other characteristics of the columns of W are assumed as follows:

ii
n

w ∀= ,1
1 (2)

1
1

,0 >
=

∀= j

n

i
ijw (3)
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For a given spectrum, we now have a sample space of !n  unique sets of equally likely m-vectors
(latent variables) that comprise WYT ⋅= π .  The particular realization of T that arises (at
random) depends on the distribution of intensities within Y and the permutation π =(not, however,
on the natural ordering of Y [Step 1 took care of that]).  Due to (2) and the fact that that the mean
of Y is zero, T1 = 0.  In general, due to characteristics (1) and (3), we can claim that for the jth

element in T (Tj),

1 0)( >∀= jjTE

1 1)( >∀= jjTVar ∗∗ .

At this point, there is an association of the latent variable with its particular basis (a column of
W).   Depending on the size of m and the particular basis set that is used (e.g., m = n), T may be
used to extract information about πY (e.g., via W-1).  From πY , one might obtain information
about Y.  Thus, one final step is needed to completely hide the original spectrum.

Step 4: Permute T: ( )σππσ WYWYTUT ⋅→⋅=→ or    .  Permute the latent variables.  This
step hides the association of a specific latent variable with a column of W.  At this point we have
broken the association between each column of W and its corresponding latent variable.  For this
step alone the sample space is of size m!.  The whole process (Steps two to four) defines a
sample space of up to !  ! mn ×  equally likely sets of permuted latent variables for each spectrum.
The actual number of distinct sets of latent variables depends on W.  The random permutation
(σ) renders the distributions of the elements of U as mutually indistinguishable or
interchangeable.  Thus, over the class of possible permutations (π=and=σ) for a particular
spectrum, the elements of U are identically distributed. Note that as an alternative to this second
permutation, it has been suggested that the Ts be sorted rather than permuted.  Admittedly, this
will result in a simpler procedure. The problem is that such a procedure will allow many other
input spectra to be incorrectly authenticated (many to 1 mapping) as only the distribution of Ts is
authenticated (as opposed to the distribution and order of Ts).

3.3.1 Candidate Transformation Matrices (W)

The restrictions on W are that its columns and rows must be mutually orthonormal.  In addition,
we require

1
1

,0 >
=

∀= j

n

i
ijw  with iiw ∀=  ,1 κ .

There are a large number of candidates for W.  Two possibilities for W are discussed in detail
here.

                                                

∗∗  See [L75] for details.
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3.3.1.1 Normalized Hadamard Matrix
A Hadamard matrix, H, has elements }1,1{ +−∈ijH .  The rows and columns of H are orthogonal.

The order of a Hadamard matrix, n, is restricted to 1, 2, or 4n where +∈ Zn .  Thus, for example,
the dimension of the gamma spectra (n = 128) is compatible with this restriction.  Hn has the
property that

T
nn H

n
H ⋅=− 11 .

For example, a Hadamard matrix of size 4 x 4 is

�

�
�
�
�

�

�

−−
−−
−−

=

1111
1111
1111

1111

4H .

In order to obtain columns with length 1, we normalize

H: nH
n

W
1= .

In order to achieve our target statistical properties of the transformed spectra, we replace the
condition that

 
j

n

i
ijw ∀=

=
,0

1

with 0=Y . A lower bound for the number of unique Hadamard matrices of order n (when they
exist for that order) is n!.  This lower bound can be achieved by simply permuting the n unique
columns (or rows) of Hn, where Hn is obtained via a standard construction in which all elements
of the first column and row of Hn are +1 (or –1).  In general, the number of unique Hadamard
matrices of order N is unknown [HSS99].  Constructions for Hadamard matrices are discussed in
[HSS99].

Note the uniqueness of the first column and row of the standardized Hadamard (all ones [or
negative ones]). Thus, the first latent variable will be zero by construction.

For more information, see http://www.astro.virginia.edu/~eww6n/math/HadamardMatrix.html.

3.3.1.2 Fourier Coefficients – Cosine/Sine Basis
Assume that the spectrum is size n, where n is even (there is a similar development when n is
odd).  One possible basis set consists of

http://www.astro.virginia.edu/~eww6n/math/HadamardMatrix.html
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( )
2

1
1 =tf

( ) �
�
�

� ⋅−⋅⋅=
n

tp
tf p

)1(2cos π , for }2/ ..., 3, ,2{ np ∈ ,

( ) ( )ttf n ⋅⋅=+ πcos
2

1
12/ , and

( ) �
�

�
�

� ⋅−⋅⋅=+ n

tp
tf pn

)1(2sin2/
π , for }2/ ..., 3, ,2{ np ∈ ,

all defined on 1}- ..., 2, 1, ,0{ nt = .  Let the jth column of F be defined by
)}1(,),1( ),0({ −nfff jjj � .  The columns of F are orthogonal with

j

n

i
ij

n
f ∀=

=
,

21

2  and 1
1

,0 >
=

∀= j

n

i
ijf .

In order to obtain columns with length 1, we normalize

F: nF
n

W

2

1= .

As in the case of the Hadamard basis set, note that the elements of the first column are constant.
Since, 0=Y , one latent variable will be zero by construction.

3.4 Example - Weapon Monitoring Application

In the weapon monitoring application, the host country is responsible for the inspected item and
plays the role of the inspecting agent.  The other parties to a particular treaty act as inspectors.
The goal of weapon monitoring is to distinguish between different classes of weapons so that
certain treaty-limited items can be tightly controlled.  Therefore, there is no need to distinguish
between individual weapons.

The monitoring system is initialized once for each class of weapon.  During this step, a single
weapon representing the entire weapon class is inspected using out-of-band means to acquire
trust in the monitoring system from this time forward.  If the initialization weapon is not a
trustworthy representative of the weapon class, then subsequent inspections cannot be trusted
either.  During initialization, a class-specific passcode is entered to form the secret permutations
within the monitoring equipment.  The same passcode must be entered at all subsequent
inspections of the same weapon class and the passcode must be kept secret.  After initialization,
the monitoring equipment can erase the passcode, the permutations, and the classified data from
the weapon measurement so that it no longer holds any secrets.  The output of the initialization
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process is an unclassified reference signal that the inspector can use for subsequent inspections
of the weapon class.

During a routine inspection, the monitoring equipment acquires a measurement of the weapon,
accepts a passcode from the host country, and outputs an unclassified inspection signal.  The
inspector can make a statistical similarity measurement between the inspection signal and the
reference signal to arrive at an authentication result.

In the nuclear weapons verification area, gamma-ray spectroscopy can be used to uniquely
identify weapon classes.  The basis for this is the unique radio-isotopic/structural configuration
of each weapon class.  This gives rise to a characteristic gamma spectrum for each class.  Spectra
vary within a class due to manufacturing variation across units, the random nature of radioactive
decay and measurement error.  To illustrate the PTP method, 30 artificial gamma spectra were
created.  The spectra simulate the measurement (including Poisson counting errors) of 5 different
gamma-emitting materials.  Each material consists of a mixture of several radionuclides. Two
counting times are assumed for each material.  For each combination of material/counting time,
there are 3 replicate spectra.  The spectra, which have dimension n = 128, are displayed in Figure
3.2.
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Figure 3.2 Gamma Spectra
The complete data-hiding mechanism in this example is as follows.  First, a spectrum is square-
root transformed on a pixel-by-pixel basis.   (Here, the square-root transformation is variance-
normalizing.)  Next, the square-root transformed spectrum is centered (translated) and
normalized such that its average value is 0 and standard deviation is 1.  The resulting spectrum is
then permuted (via a random permutation, π ) and transformed via a normalized Hadamard
matrix



( nH
n

W
1= ).

The first latent variable is identically zero by construction, because the first column of W is a
constant and the average spectrum is zero.  Since there is no information in the first latent
variable it is deleted.  The remaining latent variables (m=127) are permuted via a random
permutation, σ .  Figure 3.3(a.–g.) illustrates the step-by-step metamorphosis of an individual
spectrum from its original state (Y) to its final PTP-state (U).  Notice that, as expected from
theory, the public version of the spectrum (Figure 3.3g) is effectively indistinguishable from
Gaussian white noise.
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Figure 3.4 Multiple Output Spectra From Single Input Spectrum
Figure 3.5 illustrates the effect of applying different random permutations (in conjunction with
the fixed W) to input spectra from different classes.  A comparison of Figure 3.4 and Figure 3.5
shows that there is as much diversity within a class (using different permutation sets) as there is
across classes.  The spectra in both figures are essentially indistinguishable from independent
Gaussian white noise processes.
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Figure 3.5 Output Spectra From Different Input Classes
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Figure 3.6 illustrates the effect of applying the same transformation (W and, {π ,σ })  to the 2
sets of replicates of a single class.  As is evident, there are only very minor differences across the
spectra.
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Figure 3.6 Output Spectra From Different Input Spectra of Same Class

3.5 Example - Biometric Application

In the biometric application, individual people represent the inspected agent and the inspected
item is some biometric (e.g., fingerprint, retinal scan, hand geometry, etc.) of the inspected agent.
The passcode is analogous to a personal identification number (PIN) that is entered by the
individual or is read from a badge held by the individual.  The inspector in this application is in
control of both the monitoring equipment and the reference templates.

Initialization of the biometric monitoring system occurs once for each individual person.  During
this step, trust in the individual is acquired using out-of-band means.  Once trust is established,
the individual’s biometric is measured, the PIN is acquired and a reference signal is computed
for use during subsequent authentication of the individual.

When a PIN is entered by an individual or via a badge, the monitoring equipment retrieves the
appropriate reference signal, measures the biometric and tests the “hidden” biometric with the
reference signal as a test of authentication.  The biometric is hidden so a collection of reference
signals can be stored on a server while maintaining privacy of the associated biometrics.
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3.6 Distribution of PTP Output Elements

This section provides a discussion of the distribution of the PTP output elements both within and
across verification classes.  This discussion is important because it provides a foundation for
demonstrating the difficulties in distinguishing verification classes via the PTP output.  The first
part of the section deals with the limiting normal distribution of the PTP output as ∞→n .  The
second part of this section illustrates that the normal distribution suggested via the asymptotic
analysis is a very good approximation for 100≥n .

First, assume a fixed input vector Y, such that its elements have mean 0 and variance 1. Recall
that  

21 21 n
YwYwYwT njjjj πππ +++= � , where  

i
Yπ  is the ith element of Yπ and wij is the ijth

element of W.  In cases where the first column of W is a constant (e.g., see Hadamard or
cosine/sine constructions for W), 01 =T  since the elements of the first column of W are identical
and 0=Y .  Thus, 1T  is not informative, so we really have only n-1 informative outputs.
However, for

1>j , 0=⋅ jw  and ( ) 1
1

2 =−
=

⋅

n

i
jij ww .

Over the sample space populated by the permutation π on the single spectrum Y, 0)( =
i

YE π  and
1)( =

i
YVar π .  First, fix j.  Let

=
=

n

k
k

n
j XT

1
and

kk
YwX jk πρ= .  { }nkX k :1; ==X

is a set of random variables derived from the sample space populated by the permutation ππππ on Y
and the permutation ρ on the jth column of W.  Note that the elements of  X  are exchangeable
[KT81]. Note that

0)( =kXE  and 
n

XE k

1)( 2 = .

Suppose that χn = {Xk, k=1:n} defines a sequence indexed by n. Assume the regularity
conditions

∞<3
1XE , )()( 2

21
−=⋅ noXXE , 22

2
2

1 )( −→⋅ nXXE , and )( 13
1

−= noXE .

Due to the exchangeability of the elements in X,

X, ( )  
)(

n
j

n
j

n
jn

j
TVar

TET
Z

−
=

 converges to a Gaussian (0,1) random variable as ∞→n  [CT97].
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Furthermore, since  0)( =n
jTE  and mj

n
jTVar ,,1 1)(

�=∀= , n
jT  converges to a Normal (0,1) random

variable. So in the limit for a fixed spectrum, the Tj are identically and normally distributed over
the sample space of the permutations of Y.  Furthermore, the Tj are uncorrelated since they are
derived via an orthogonal basis (W).  Uncorrelated random variables that are Gaussian
distributed are independent.  Thus, the vector ],,,[ 21 nTTT �=T  converges to Gaussian white
noise.

With regard to satisfying the regularity conditions, one has to consider both the transformation
matrix (W) and the input data vector (Y).  For example, assume that W is a Hadamard matrix.  In
this case, for j>1:
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Thus, in this case, the regularity conditions

( )2
21 )( −=⋅ noXXE  and 22

2
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1 )( −→⋅ nXXE

imply that

1. ( )1)( 21 oYYE =⋅  and

2. 1)( 2
2

2
1 →⋅YYE .

The other regularity conditions

∞<3
1XE  and )( 13

1
−= noXE

require a certain amount of variety in the input spectrum.  For example, in the gamma spectrum
example, the spectral mass should be well spread out and not concentrated at a few channels.

The above result holds for any input spectrum Y and transformation matrix W consistent with the
above regularity conditions and the specifications for W.  The result does not depend on the
verification class.  Thus, in the limit for such spectra, T converges in distribution to Gaussian
white noise as ∞→n .  The noise realization depends on Y and the permutation, π.  Thus, as

∞→n , the distributions of T are indistinguishable across input spectra.

The second permutation, σ, simply permutes the elements of T and does not affect its
distribution.  Thus, the final PTP output (U) converges almost surely to Gaussian white noise as

∞→n  so that the distributions of U are indistinguishable across input spectra within and across
classes.



Next, we will demonstrate the distributional similarity of PTP output across permutations and a
variety of simulated gamma spectra with n=128 channels. Figure 3.7 displays the PTP output
from a single input spectrum with 5 different sets of permutations.  The upper portion of Figure
3.7 displays the 5 realizations of output while the bottom portion of the figure displays the
empirical cumulative distribution functions of the PTP elements associated with each realization.
The standard Normal (mean=0 and standard deviation=1) cumulative distribution is
superimposed in black for comparison.

Figure 3.8 displays summary of PTP outputs derived from 5 different input spectra, each
associated with unique sets of permutations.  A comparison of Figure 3.7 and Figure 3.8 shows
that the distributions for a fixed input (but different permutations) differ by as much as the
distributions associated with a variable input.  At a macro-level the distributions of PTP elements
are similar and are each indistinguishable from a standard Normal distribution.
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Table 3.1 Distribution of Dn, by Input Spectrum

Spectrum
50th

Percentile
75th

Percentile
90th

Percentile
95th

Percentile
99th

Percentile
1 0.0629 0.0763 0.0944 0.1076 0.1760
2 0.0644 0.0779 0.0934 0.1043 0.1358
3 0.0635 0.0779 0.0928 0.1046 0.1782
4 0.0632 0.0762 0.0918 0.1048 0.1931
5 0.0622 0.0757 0.0903 0.1034 0.1870
6 0.0630 0.0769 0.0936 0.1087 0.1806
7 0.0542 0.0649 0.0809 0.0962 0.2064
8 0.0542 0.0649 0.0810 0.0988 0.2210
9 0.0556 0.0665 0.0816 0.1009 0.2215
10 0.0555 0.0663 0.0851 0.1048 0.2882
11 0.0534 0.0640 0.0779 0.0936 0.2146
12 0.0536 0.0651 0.0810 0.0985 0.2862
13 0.0567 0.0705 0.0952 0.1396 0.1875
14 0.0571 0.0696 0.0897 0.1136 0.1912
15 0.0574 0.0711 0.0905 0.1222 0.1730
16 0.0565 0.0695 0.0890 0.1121 0.1969
17 0.0577 0.0710 0.0912 0.1136 0.1706
18 0.0568 0.0698 0.0903 0.1195 0.1813
19 0.0565 0.0667 0.0842 0.0986 0.1905
20 0.0578 0.0691 0.0883 0.1097 0.2620
21 0.0568 0.0689 0.0879 0.1091 0.1935
22 0.0573 0.0704 0.0860 0.0992 0.1640
23 0.0569 0.0695 0.0885 0.1059 0.2094
24 0.0569 0.0692 0.0837 0.0961 0.1662
25 0.0700 0.0826 0.0986 0.1086 0.1221
26 0.0695 0.0837 0.0980 0.1070 0.1217
27 0.0686 0.0825 0.0957 0.1027 0.1194
28 0.0689 0.0835 0.0977 0.1059 0.1200
29 0.0697 0.0826 0.0964 0.1054 0.1215
30 0.0686 0.0836 0.0983 0.1106 0.1245

In general, characteristics that influence the degree to which the PTP output elements resemble
Gaussian white noise include the dimension of the spectrum n, and the distribution of intensities
associated with the input spectrum, Y.  For a fixed spectral shape, the PTP outputs tend towards
Gaussian white noise as n increases.  If the input spectral intensities are well distributed and not
concentrated at a few pixels, the PTP output is likely to resemble Gaussian white noise.  Such
spectra are said to be well behaved.

So far we have focused on the distribution of PTP output elements in a gross sense.  For finite n,
in the case of simulated gamma spectra used as input, we have shown that it is difficult to
distinguish the resulting PTP output from Gaussian white noise.  However, at a micro level, the
distribution of PTP output elements does depend on the input spectrum that is to be transformed.
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For a fixed input spectrum over all possible permutations (π and σ), there is a finite set of values
possible in the PTP output.  In this regard, the PTP output based on a sine/cosine construction is
superior to output derived from a Hadamard-constructed PTP because the finite set of values in
the former case is larger than the set of possibilities derived from the later case.  The more
limited set of possibilities in the case of the Hadamard construction is due to the restricted set of
coefficients available in a Hadamard matrix (+1 or –1).  The set of possible PTP output values
varies from spectrum to spectrum.  However, the variation of spectra within a class (e.g., due to
unit-to-unit variation and measurement error) broadens the set of possible output elements
considerably within a class.

4. Efficacy of the PTP Method for Data Hiding

The efficacy of the PTP method for data hiding is described in 2 contexts.  In the first context,
we discuss the ability of the PTP method to hide Y given that an adversary has a single output
spectrum from a given class.  In the second context, we discuss some possible vulnerabilities of
the PTP method when an adversary has multiple output spectra from the same class.

4.1 Single Output Spectrum

It is clear that the second random permutation (σ) destroys any structure in the PTP output (U) so
that the order of the elements of an output spectrum provides no information regarding the
characteristics of the input spectrum.  We argue that all residual information about Y within U is
localized to the distribution (as a whole) of values within U.  Thus, the information-containing
aspect of U is limited to the distribution of its elements.

However, assuming that the candidate spectra are well behaved, the distributions of the elements
of the U are approximately the same regardless of the particular spectrum that is transformed.  In
the limit, as ∞→n , the elements of U are independently and identically distributed according to
a Normal distribution with zero mean and variance equal to 1 (Gaussian white noise).  Thus, in
this limiting case and without knowledge of π and=σ, a single PTP-output is completely
uninformative about the character of the input spectrum (Y).  This is the fundamental basis for
claiming that the PTP method is an effective data-hiding mechanism.

In summary, the PTP transformation makes the distribution (in a statistical sense) of possible
output vectors from one class indistinguishable from the distribution of possible output vectors
from another class.  The PTP transformation produces output that is essentially indistinguishable
from Gaussian white noise.  For a particular input spectrum there is a huge number of possible
realizations of this Gaussian white noise process (e.g., when W is a normalized Hadamard matrix
obtained by a standard construction there at least !n  possible realizations).  The uniqueness of
the output for a particular class is provided by the combination of the input spectrum, the input
permutation, and the output permutation.

Despite the evidence about the lack of information concerning Y via U, it is interesting to
consider possible ways to attack the PTP scheme (i.e., gain information about Y).  A brute force
attack would be to invert U via all possible permutations in conjunction with W-1.  There are at
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least 2 problems with this attack.  First, the number of possible permutations could be enormous.
It is believed that it would be computationally infeasible to compute all permutations for
reasonably large n and m (e.g., 128! > 10200).

The second problem is more subtle.  Suppose one were able to compute all possible versions of Y
given U.  Out of the huge number of possibilities for Y, we conjecture that just by chance there
could be a very large number of feasible solutions.  We conjecture that an attacker would have
great difficulty in identifying the true value of Y from the feasible solutions.  For example, Figure
4.1 displays the first 64 channels of a simulated gamma spectrum.  Superimposed on this
spectrum is a fixed line at 260 counts.  Let S1 be the sub-spectrum from the pixel denoted by a
‘*’ to the pixel denoted by a ‘o’.  Let S2 be the sub-spectrum from the pixel denoted by a ‘o’ to
the pixel denoted by a ‘x’.  Let S3 be the sub-spectrum from the pixel denoted by a ‘x’ to the
pixel denoted by a ‘+’.  The count values of the 4 highlighted pixels are the same except for
measurement error.  The 3 sub-spectra (S1, S2, and S3) can be interchanged and reversed to form

! 323 ⋅  spectra that have an underlying smooth nature (hence possibly feasible) and would be
equally likely solutions for Y given U that is derived from the true Y.  Figure 4.2 displays one
such result obtained by exchanging S1 and S3 and reversing S1.  Note that the construction (e.g.,
isotopic composition) of systems giving rise to these spectra would be significantly different.
There are numerous other ways to develop feasible spectra.
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Figure 4.1 Simulated Gamma Spectrum
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Figure 4.2 Feasible Solution
Continuing with the notion that one could compute all possible versions of Y given U, a proposed
attack involves finding the “smoothest” version of Y and using that version as the solution.  To
formalize, suppose that we have been able to reduce the candidate solution set to X which is a
permutation of the true input vector.  Consider the objective function:

( )
=

+ −=
n

i
ii YYD

1

2
1 ,

where Y = Xρ is a permutation of X.  The permutation of X that minimizes D produces a
monotone non-decreasing (or non-increasing) set of values for Y (e.g., Yi = X(i)).  This can easily
be proved by induction.  The point is that the use of smoothness as a singular criterion for finding
the true input vector may not be useful.

4.2 Multiple Output Spectra

Suppose that multiple output spectra from a single class are available to an adversary who is
trying to obtain class-specific information about the input spectra. To formalize, consider the
following 2 measurement error models.

Model 1:  δ+= yY  and ε+= uU

1. Y is the input spectrum as measured (not accessible by host or adversary).
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2. y is an idealized input spectrum that is perfectly repeatable within a class.

3. =δ is the vector difference between the actual input spectrum and the idealized class-
specific spectrum.

4.  ( )σπ WYU ⋅=  is the public output of the PTP procedure applied to Y.

5.  ( )σπ Wyu ⋅=  is the hypothetical output of the PTP procedure applied to y.

6.  ( )σπδε W⋅=  is the hypothetical output of the PTP procedure applied to δ.

Note that the only public observable is U (the output spectrum).

For this discussion, assume that Y is centered and scaled such that YYT =1 and 0=Y .  Also
assume that W is n by n (i.e. there is no dimension reduction).  Other assumptions are made
concerning the elements of=δ, denoted by •δ  where i=1, 2, …, n.  These assumptions are:

E( •δ ) = 0 and Var( •δ ) = 2
δσ ,

where the sample space spans all pixels of spectra within the same class.  This broad sample
space is considered due to the permutation, π.  It follows that E( T

••δδ ) = 2
δσ⋅n .  Note that 2

δσ
could depend on the class and/or the measurement conditions.

In certain limits (e.g., well-behaved Y with large n), U is indistinguishable from Gaussian white
noise (independent Gaussian elements with mean 0 and variance 1).

Via similar conditions on δ, one can argue that ε is indistinguishable from Gaussian white noise
(elements with mean 0 and variance,

T

n
δδσ ε ⋅= 12 ).

By difference, it follows that u is indistinguishable from a Gaussian white noise process with
zero mean and variance, 21 εσ− .

Multiple observations of U for a certain class might be used to estimate 2
εσ  which can in turn be

used to estimate 2
δσ .  For example a reasonable estimate of 2

εσ  is

( ) ( )
= =

⋅−⋅
⋅−

=
T

t

n

i
iti UU

nT 1 1

22

1
1ˆεσ ,

where T is the number of observations and iU ⋅ is the average value of the ith pixel over the T

observations.  Based on 2ˆ εσ , a good estimate of 2
δσ  is 2ˆδσ = 2ˆ εσ .  Thus, multiple observations of
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U can provide information on Var(δi), which is a gross measure of the repeatability of Y across
pixels and spectra.

In the case of the example involving gamma spectra, a relatively large value for 2ˆδσ  might
suggest that the underlying gamma spectrum (prior to scaling) has relatively poor signal-to-noise
quality.  For example, consider the 6 simulated gamma spectra shown in Figure 4.3.  These
spectra represent repeat measurements of the same material.   Three of the spectra are associated
with a simulated counting time of X, while the other 3 are associated with a counting time of 5X
and thus have better signal-to-noise quality.  These spectra (not square-root transformed) are
centered and scaled prior to applying the PTP. (Also see Figure 4.4. Clearly the spectra
associated with a counting time of X are noisier.)  Following the PTP operation, we observe

iti UU ⋅−  (for each set of 3 spectra.  Figure 4.5 displays iti UU ⋅− associated with each counting
time case.  In the case of relatively poor signal to noise (counting time is X), 1283.ˆ =εσ ,
whereas in the case of relatively good signal-to-noise, 0621.ˆ =εσ .
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Figure 4.3 Simulated Spectra (Counting times of X and 5X)
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Figure 4.4 Normalized Spectra

A. With X Counting Time,  B.  With 5X Counting Time.
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A. With X Counting Time, B.  With 5X Counting Time.
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Here we have used simulated measurements of the same class at different counting times to vary
signal-to-noise quality. From repeated observations of U we were able to ascertain the relative
signal-to-noise of the inputs.  In practice, an adversary could analyze the repeated outputs from a
fixed class to ascertain the relative signal-to-noise in the inputs.  From that, an adversary might
be able to deduce something about the magnitude of the underlying class-specific signal y (e.g.,
yyT) if there is a relationship between 2

δσ  and yyT.  However, even if ε= was available to the
adversary, nothing about the shape of Y (or y) would be revealed, since mapping ε to δ is as
difficult as mapping U to Y.

So far, we have assumed that δ=is unknown to the adversary.  However, if δ=is known or if an
adversary had the ability to adjust Y (e.g., by adding a known perturbation) and observe the
corresponding change in U, then the adversary could determine π and σ even without knowledge
of Y.  Potential adversaries must not have the ability to affect Y.  One way to defend against the
adversary would be to vary the signal to noise in the original input spectra (prior to the
normalization that results in YYT =1) from measurement to measurement.  For example, one
could accomplish this by varying the counting time.  An assumption here is that the original
input noise is only small part of the original total input signal.  If that assumption holds, the
magnitude of the resulting idealized spectrum is, after normalization, relatively unaffected.

Model 2:  δ+= yY  and ε+= uU ,  the same as Model 1 except that the individual elements in
δ have different variances.  This attack assumes that the measurement-error variances of the
input channels are unique. The basic strategy of the attack is to do an eigenanalysis of a set of
output spectra (U1, U2, …, UN) from a single class.   If certain conditions are satisfied, then each
sign-transformed eigenvector is equivalent to a row of σπ W⋅±1 . Given that there are n rows, one
can guarantee that a row permutation of the matrix σπW  exists within the set of 2n possible
candidates (the set of possible candidates is due to the sign ambiguities of the eigenvectors).  The
search space is thus reduced from more than n! candidates to one with 2n candidates.  The search
space can be further reduced greatly by utilizing the known form of the Hadamard matrix.
Assume that the row permutation of the matrix σπW  (say σπω WV )(= ) can be identified from the
possible candidates.  Now given a specific output spectrum (U), V can be used in conjunction
with U to obtain a permuted version of the associated input spectrum (Y).  That is TVUY ⋅=)(πω .
Thus, this attack can produce a permuted version of the input spectrum.

The following MATLAB code provides an example of how this might be done.

% This attack obtains ROWS of the transformation matrix
% It uses many repeat observations (n=100)
% Start with Hadamard matrix (forget about permutations for
now)
w=hadamard(8);
% Create input data (actually perturbations) such that each
input variable has a % unique standard deviation, sd
sd=[100 1000 10000 10 1 .1 .01 .001];
x=randn(100,8)*diag(sd);
%Transform to output (y)
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y=x*w;
my=y-ones(100,1)*mean(y);
% Do eigen-analysis of y
[c,n]=size(y);
ay=ones(1,c)*y/c;
[u,s,nev]=svd(y-ones(c,1)*ay,0);
nev=nev(:,1:8);
score=y*nev;
ev=sign(nev);
w =

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

ev =
1 -1 1 -1 1 -1 1 -1
1 1 1 1 1 1 1 1
-1 -1 1 1 1 -1 -1 1
-1 1 1 -1 1 1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 1 1 -1 -1 -1 -1
-1 -1 1 1 -1 1 1 -1
-1 1 1 -1 -1 -1 1 1

Except for a sign (e.g., columns 2, 4, 6, and 8), the original columns of  EV form the rows of W.
Here, due to the wide disparity in variances and relatively small dimension (n=8), we needed
relatively few observations to get the rows of W.  Although this attack does reveal the rows of W,
it does not (in general) reveal their ordering.  Also note that the columns of EV are the rows of W
sorted by the standard deviation of the errors in the input variables (sd = [100 1000 10000 10 1 .1
.01 .001]).   For example, the first column of EV is the third row of W corresponding to the
location of the maximum element in sd (10000).  The second column of EV is the second row of
W corresponding to the location of the second largest element in sd (1000).

The rough argument behind this attack is that the uniqueness of the measurement-error variances
of the input channels induces a correlation structure in the output channels.  To illustrate,
represent the kth replicate (within a class) of the jth ouput channel as

 2211 nkjnkjkjjk YwYwYwU +++= � , where the w.. terms are the values in the Hadamard-
constructed

W (
n

1± ),
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the Y. terms are the values associated with the input channels,  and Nk ,,2,1 �= .  Now, consider
a degenerate case where the first input channel (Y1.) is the only input channel that exhibits
variability over the set of replicates ( Nk ,,2,1 �= ).  Thus, observed variation in the output
channels Ujk is due solely to the variation in (Y1.).  The result is perfect positive correlation
between output channels j and j’ if 1'1 jj ww =  (concordant channels) and perfect negative
correlation between these output channels if 1'1 jj ww −= (discordant channels).  In the general
case, an eigen-analysis of the sample covariance matrix of the output channels (n by n) could be
used to extract the rows of W.  The sample covariance matrix of the output channels is
decomposed into n n-dimensional eigenvectors.  In our example this analysis was accomplished
via a singular-value decomposition of the mean-centered output spectra.  A sample size (N) that
is suitable for the degree of variance similarity across input channels is required (more similarity
in variances requires a larger sample size).  An element-by-element sign transform of each
eigenvector will result in a vector that is equal to a column of W (to within a sign).  It does not
seem possible to resolve the sign ambiguity.

Note that the difficulty in implementing this attack increases as the channel variances become
more homogeneous, the sample size (N) decreases, and the dimension of the spectrum (n)
increases.

In order to characterize the efficacy of this attack over a broad range of conditions, the following
limited study was conducted.  The degree of variance similarity was controlled by the function

( ) nifV i
i ,,2,1,1 �=+= , where Vi is the measurement error variance associated with the ith

input channel.  For this study, the assumed distribution of the measurement errors is Normal.
Larger values of f impose greater diversity in variance and hence make the attack easier.  When
f= 0, this attack will not work even for an arbitrarily large replicate sample size.  Values of n that
were considered are in the set {8, 16, 32, 64, 128}.  Replicate sample sizes considered (N) are in
the set {10, 100, 1000, 10000}.  For each value of }1 ,5. ,2. ,1. ,05. ,025{.∈f and n we identified
(in a rough sense) the minimal sample size that would allow a successful attack (Table 4.1).  See
the sample MATLAB code below.

n=128;
f=1
sampsize=1000;
w=hadamard(n);
% Create input data such that each input variable has a
unique variance
dd=(1+f).^(1:n);
x=randn(sampsize,n)*diag(dd);
%Transform to output (y)
y=x*w;
% Do eigen-analysis of y
ay=ones(1,sampsize)*y/sampsize;
[u,s,nev]=svd(y-ones(sampsize,1)*ay,0);
nev=nev(:,1:n);
ev=sign(nev);
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Table 4.1 Sample Size Required* for Successful Attack

f = .025 f = .05 f = .10 f = .20 f = .50 f = 1.0
n = 8 10,000 10,000 1,000 1,000 100 100
n = 16 10,000 10,000 10,000 1,000 100 100
n = 32 >10,000 10,000 10,000 1,000 100 100
n = 64 >10,000 10,000 10,000 1,000 100 100
n = 128 >10,000 10,000 10,000 1,000 1000 1000

*Smallest value of {10, 100, 1000, 10000} that will likely facilitate a successful attack.  This is
just a rough order of magnitude estimate.  Note that a hard restriction is that the sample size must
exceed n.

For any particular situation, the ratio of the largest variance to the smallest is ( ) 11 −+ nf .  For
example, for n = 128 and f = .025, this ratio is larger than 23.  Thus, even with the amount of
variance disparity in this case, more than 10,000 replicate samples would be required to make a
successful attack.

5. Efficacy of the PTP Method for Class Discrimination

Suppose our test statistic is of the form

( )
=

−=
m

j
jj UUD

1

2)target()new( ,

where Uj (new) represents the jth element of the PTP-spectrum from the item being evaluated and
Uj (target) is the jth element of the target PTP-spectrum.  We conclude that the item is authentic if
D < Dcrit.

Case 1: No dimension reduction (m = n).

Suppose

( )
=

−=
n

j
jj YYE

1

2)target()new(

represents the test statistic that is computed when using the original spectra (Y) modified by Step
0.  We conclude that the item is authentic if E < Ecrit.  For this case we will also assume the
following:

Theorem: For any real-valued n-dimensional spectrum (Y) and any permutations (π and σ ), E =
D if W is symmetric orthonormal with dimensions n x n.  Alternatively, we could specify that

TWW =−1  (see example below with



36

NH
N

W
1= ,

where HN is a Hadamard matrix of order N).

Proof: The permutations only hide the data.  They have no effect on efficacy.  WYU ⋅= and
WYU newnew ⋅= . Thus,

( ) ( ) ( )YYUUUUD new
T

newnew −=−⋅−= ( ) =−⋅⋅⋅ T
new

T YYWW ( )YYnew − ( ) EYY T
new =− .

NOTE:  IWWWW TT =⋅=⋅  if W is symmetric orthonormal.

Consequences of Theorem: If E = D (and Ecrit=Dcrit), then the classification of an item
(authentic or not authentic) is the same whether we use E or D and hence the original spectrum
or PTP spectrum.  So if E provides adequate discrimination, then D will provide adequate
discrimination.

Example: Suppose W is a normalized Hadamard matrix (see Section 3.3.1.1).  This choice for W
seems especially attractive due to its simple binary nature that may make it a good candidate for
hardware implementation.

It is very interesting that [SDM97] use a very similar approach for scrambling speech.  The
authors exploit the fact that Hadamard matrices may be transformed into other H-equivalent
matrices by permuting rows and columns and by multiplying rows and columns by –1.  The
resultant transformation of the original data is given by SY ⋅ , where

colNrow PHP
n

S ⋅⋅= 1 .  rowP  and colP

are signed permutation matrices (row and column, respectively).  The signed attribute of the
permutation matrix makes this transformation somewhat more general than the case without it.
The authors point out that there are 2)2!( nn ⋅  H-equivalent matrices, but some are identical.  Also,
the authors provide limited crypt-analysis of this scheme.  Finally, the authors mention how this
scheme could be further generalized by choosing S to be any well-conditioned normalized matrix
with fast algorithm for multiplying with S and S-1.

Case 2: Maximum dimension reduction (m = 1).

In this case, W is an n x 1 column vector.  Therefore, WYU ⋅= and WYU newnew ⋅=  will now be
1 x m row vectors.  Thus,

( ) ( ) ( ) ( )T
new

T
new

T
newnew YYWWYYUUUUD −⋅⋅⋅−=−⋅−=

where TWW ⋅  is an n x n symmetric matrix.
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Case 3: General dimension reduction (m < n).

The efficacy of the method depends on the relationship between W and the data.  It is possible
that D will be better or worse than E with respect to classification/discrimination.

In the case of the gamma spectroscopy example, discrimination across classes is relatively easy
given the relatively large inter-class spectral differences and the relatively good repeatability of
spectra.  By mean-centering (translating) and scaling the spectra, we have lost the ability to
discriminate based on the average value and/or standard deviation within a spectrum.  We have,
however, maintained the ability to discriminate based on the shape of the spectrum.  An accepted
test statistic based on the original spectrum (after translation/scaling) is

( )
=

−
=

m

j j

jj

Y

YY
D

1

2)target()new(
,

where the denominator could be Yj(new) or Yj(target).  Note that this test statistic can be rewritten
as

( )[ ]
=

−=
m

j
jjj YYYD

1

2
/)target()new( .

A nearly equivalent test statistic is obtained by using the square root transformed spectra
(followed by translation and scaling),

( )
=

−=
m

j
jj YYD

1

22/12/1* )target()new( .

Note that in the case where Poisson counting errors are responsible for the difference between Yj

(new) and Yj (target), the square-root transformation is variance normalizing.  That is, the
variance of )target()new( 2/12/1

jj YY − does not depend on j.  This is due to the fact that the
variance of Y is Y in the case of Poisson counting errors.  Note that D is the sum of the
normalized squared measurement differences over the m input channels, where the channel
specific normalization is the variance associated with the channel.  Note that this variance
normalizing transformation would significantly reduce vulnerability to attacks that might utilize
the differential variances of input channels (e.g., see Section 4.2).

5.1 Dimension Inflation

Suppose that the dimension of the signal of interest is small enough such that it is
computationally feasible for an adversary to examine the whole sample space of possible
permutations.  One way to reduce the computational feasibility of a brute-force examination of
the sample space would be for the host to add pseudo-dimensions that would be indistinguishable
when compared to the true dimensions (e.g., both Gaussian white noise).  This could improve
security considerably.
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Let:

1. xmWY 1 be π ,

2. E  be a m’-dimensional random variable with independent elements having
approximately the same distribution as the elements of WYπ (e.g., normal mean zero
and variance 1), and

3. ε  be a m’-dimensional  random variable with independent elements having mean
zero and variance 2

εσ of the order of the reproducibility of measurements within a
class.

Characteristics of E and εεεε are as follows: E is constant within a measurement class and variable
across measurement classes.  E could be a consequence of the seeds used to generate ππππ and σσσσ or
derived from another seed that is private to the host and specific for a particular class.  εεεε  varies
within a class from measurement to measurement (perhaps derived from yet another seed).

The net transmitted signal is of the form  ]  [ σπ ε+= EWYZ .  Z has dimension m+m’ with
approximately identically distributed elements (statistically indistinguishable).  Thus, we have
intermixed signals that are relevant to the measurements of the class WYπ , irrelevant to the
measurement but specific to the class (E), and irrelevant to the class (εεεε).  Without εεεε,=the inspector
could compare transmitted signals ( )  ]  [ σπ EWYZ =  and determine the positions of the elements
of E.  Of course, with the addition of εεεε, there is some impact on discrimination performance.
Thus, there is an inherent tradeoff between increased security (m+m’>m) and the ability to
discriminate between classes (when 2

εσ >0).  Naturally, the ability to discriminate decreases as
2
εσ increases.

6. Summary

Authentication is difficult because there is no inherent trust embodied in any created thing.  In
addition, approximate authentication is difficult because a consistent representation of the
authenticated item is not available.  The need to conceal details of the original signal such that an
adversary cannot learn useful information about the original signal adds complexity to the
underlying authentication objective.  The PTP algorithm offers an information hiding technique
believed to be usable in high security applications.  By design, this algorithm is such that the
value of a simple Euclidean-distance authentication metric based on the PTP output will provide
results that exactly match the value of the metric that is obtained by using the original input.
Hence, authentication of a sensitive input signal can be achieved indirectly by authenticating the
"non-sensitive" output signal.  The PTP algorithm has been demonstrated analytically and
empirically to provide a high level of assurance that details of the original signal remain
unknown and authentication is effective.  For those interested in utilizing this algorithm in their
own applications, MATLAB, Lisp, and C code is available from the authors.
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8. APPENDIX—Discussion of Misclassification Rates

For this discussion, assume that we are attempting to verify that a certain weapon is of Type-XX.
We will compare the “transformed/permuted spectrum” of the weapon with that of a known
Type-XX weapon.  Four possibilities describe the decision space:

Weapon is Classified
as XX

Weapon is Classified as
not XX

True Weapon Type is XX Correct Classification Incorrect Classification
(Type I Error)

True Weapon Type is not
XX

Incorrect Classification
(Type II Error)

Correct Classification

We are interested in quantifying:

•  The conditional probability of misclassification given the true weapon type is XX-
“Type I Error”, and

•  The conditional probability of misclassification given the true weapon type is not
XX-“Type II Error”.
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In general, it is straightforward to quantify the conditional probability of Type I error in case A
since the truth (“true weapon type is XX”) is very well specified.  In the case of Type II error in
case B, the truth (“true weapon type is not XX”) is not very well specified.  Hence, quantification
of Type II Error is difficult in this case.

It has been proposed that the classification decision will be made on the basis of a scalar
“statistic” or “metric” which is a measure of the similarity between the current and target spectra.
Small values of this statistic indicate relatively good similarity.  (In the limit, a value of zero is
indicative of a perfect match.)

A threshold value for the statistic will be used for purposes of classification.  When the statistic
exceeds the threshold value, the weapon will be classified as “not XX.”  Otherwise, the weapon
will be said to match the target.  The selection of the particular threshold value will influence
both Type I and Type II Errors.

In order to determine an appropriate threshold, measurements of the same weapon type could be
repeated over normal variations of test conditions.  A distribution of statistical values will follow.
It is a straightforward process for using this distribution to select an appropriate threshold value
that is consistent with a specified conditional Type I Error.  Given this threshold, it is only
possible to express the underlying Type II Error for a specific weapon type (say “YY”) being
sampled.  The ability to discriminate between weapon types “XX” and “YY” will obviously
depend on “YY” and the threshold value.

In this context, note the relationship between Type I and Type II Errors and the threshold value.
As we increase the threshold value, the probability of a Type I Error will decrease and the
probability of a Type II Error will increase.

Also note that the discussion to this point has been limited to conditional probabilities of
misclassification. Unconditional probabilities of misclassification depend on the population of
items to be tested (e.g., how often does the host try to fool the inspector).

Finally, all of this easily extends to other applications (e.g., biometrics).
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